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A review ]s made of some of the experimental data and analyses ap-

olicable to convect:ive heat transfer in fully turbulent flow in smooth

tubes with liquid metals and viscous Newtonian fluids. An empirical

equation is evolved that closely approximates heat-transfer values ob-

tained from selected analyses and experimental data for Prandtl numbers

from 0.001 to i000. The terms included in the equation are Reynolds

n_Iber_ Prandtl number, and an empirical diffusivity ratio between heat

and moment um.

INTRODUCTION

Proposals for electric-_:_cwer generation on space vehicles have

stimulated increased interest in the use of liquid-metal heat-transfer

loo_s with nuclear power sources. As part of a comprehensive heat-

transfer program being conducted at the NASA Lewis Research Center_ a

literature survey was made to determine the need for further basic re-

search on f1_ly turbulent forced-convection heat transfer with liquid

metals as the working fluid. In considering that v_scous Newtonian

rluids will also have ap_,lication in other flow and heat-transfer sys-

tems on many space vehicles_ the des]r_bility of _ single_ relatively

simple equat]on for the prediction of ft_ly turbulent f_rced-convection

heat transfer over a wide range of Pr_ndtl numbers (from less than 0.04

for liquid metals to over i00 for oils) becomes evident. For the most

part investigators have developed analyses and equations applicable over

only a limited range of Prandtl or Reynolds numbers. Considerable doubt

exists as to the validity of extending these limited equations over the

wide variations in fluid properties and flow conditions characterized by

Prandtl and Reynolds numbers.
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Herein a review is made of some of the published data and analyses

applicable to viscous Newtonian and liquid-metal fluids. An empirical

equation_ based on selected heat-transfer models_ is then evolved that

yields convective heat transfer_ for engineering purposes, over a

Prandtl number range from 0.001 to i000 and a Reynolds number range from

2.1)<103 to 107 for fully turbulent flow in smooth round tubes.

PRESENT STATUS OF TURBULENT FORCED-CONVECTION HEAT TRANSFER

This section provides a brief synopsis of and background material

on some of the analyses and data commonly referred to in the literature;

it is suggested that the references be consulted for details.
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Liquid Metals

Convective heat transfer in liquid metals (Pr << 0.i) differs from

that usually ascribed to conventional fluids in that the molecular con-

duction in the core of the fluid flowing in a tube cannot be neglected

in comparison with eddy diffusion. Martinelli (ref. i) extended the

analogy between heat and momentum transfer to low Prandtl numbers.

Lyon's study (ref. 2) is an extension and simplification of Martinelli's

analysis. The main differences between these studies is that Martinelli

assumed a uniform surface temperature along a tube_ whereas Lyon assumed

the same transverse heat flow per unit area to exist over the entire

tube wall. Martinelli and Lyon both assumed identical diffusivities for

both heat and momentum; however_ as stated in reference 3_ Lyon also car-

ried a ratio of these quantities different from 1.0 throughout his anal-

ysis. On the basis of his analysis Lyon proposed the following simpli-

fied equation for predicting convective heat transfer with liquid metals:

Nu -- 7.0 + 0.025 Pe O- $ (i)

(Symbols used herein are defined in the appendix.) It should be noted

that equation (i) is independent of Prandtl number except as it occurs

in the Peclet number.

Jenkins (ref. 4) and Deissler (ref. 5) modified the mixing-length

theory to apply to low Prandtl number fluids by accounting for the heat

transferred by conduction to a turbulent particle (eddy) as it moves

transversely away from the heated tube surface_ so that the heat and

momentum diffusivities cannot be considered equal. Both investigators

assumed that the heat diffusivity is reduced to a value below that for

momentum diffusivity. Deissler also provides a simplified equation for

predicting the convective heat transfer with liquid metals:

Nu = 6.3 + 0.00022 Pe 1"3 (2)
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Although equation (2) was developed for a Prandtl number of 0.01_ it

should apply equally to other Prandtl numbers_ because Deissler's anal-

ysis showed that the relation of Nusselt to Peclet number was substan-

tially independent of Prandtl number.

Lykoudis (ref. 6) and Viskanta (ref. 7) have used somewhat differ-

ent analytical models for the diffusivity ratio between heat and momen-

tum than those of the preceding investigators. In both of these closely

related analyses the diffusivity ratio in the low Prandtl number range

is less than 1.0 and varies as a function of Prandtl number, approaching

a value of zero as the Prandtl number approaches zero. Therefore_ the

analyses of Lykoudis and Viskanta differ from those discussed previously

in that the variation of Nusselt number with Peclet number is also de-

pendent on Prandtl number. Viskanta's analysis differs from that of

Lykoudis mainly because of the effect of different velocity profiles on

mixing-cup temperature and velocity (Karman as compared with Lykoudis

velocity profile). In general the Viskanta analysis yields a somewhat

higher Nusselt number for a particular Peclet number than does the

Lykoudis analysis; for example_ at a Peclet number of 105 and a Prandtl

number of 0.02 (mercury) Viskanta obtains a 12 percent higher Nusselt

number than that of Lykoudis. At very low Peclet .numbers_ less than

105, the results of Lykoudis and Viskanta are substantially the same.

Finally it should be noted that the diffusivity ratio used in the

analyses of Deissler_ Lykoudis_ and Viskanta all include a term that is

obtained from experimental data. For example_ Lykoudis presents the

following equation (ref. 6) for the diffusivity ratio:

a -- _-_ e -c2 + 0.25 e
(3)

where c 2 is obtained by matching Lykoudis' analysis with the experi-

mental lead-bismuth data of Johnson (ref. S). The value of c 2 was

found to be 0.01 and was furthermore assumed to be valid and constant

for all liquid metals and Prandtl numbers.

The analytical heat-transfer results of Lyon; Deissler_ Lykoudis,

and Viskanta are shown in figure i plotted in terms of Nusselt n,umber

as a function of Peclet number. Also shown in figure i are ranges of

experimental data_ nomalized by Lubarsky (ref. 9), obtained primarily

with mercury and a lead-bismuth mixture (0.02 _ Pr _ 0.04). Of the

several anal_jtical results shown im figure i_ the analysis of Lykoudis

clearly shows the variation of Nusselt n_nber with Prandtl number for

a constant w_Lue of Peclet number_ whereas Deissler's and Lyon's anal-

yses show no dependence on Prandtl number_ as stated previously. At

Peclet numbers less than i00 all the analyses yield a Nusselt number of



approximately 7. The experimental data generally fall considerably be-

low Lyon's analytical values. Deissler's analytical curve is in good

agreement with the experimental data for Peclet numbers less than i000_

however, the trend of the curve deviates markedly from the experimental

data for Peclet numbers greater than i000. Lykoudis' and Viskanta's

analytical curves appear to be good representations of the experimental

data throughout the range of Peclet numbers shown. It should be re-

called, however, that Lykoudis and Viskanta used a portion of the exper-

imental data shown in figure i in order to evaluate the constant c2 in

equation (3)_ hence the good agreement between the analytical values and

the experimental data would be expected.

I
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Viscous Fluids

Convective heat transfer with conventional liquids (Pr _ 0.5) is

difficult to correlate on the basis of Peclet number only, especially

for viscous oils. Correlation in terms of Reynolds number is therefore

preferred to Peclet number, since the former correlates not only liquids

but also gases. For Newtonian fluids with a Prandtl number near 1.0

fully turbulent forced-convection heat transfer for flow through smooth

tubes has been expressed by the following empirical equation:

Nu = AReapr b (4)

where A, a, and b have been determined experimentally. Various in-

vestigators have obtained a variety of values for these constants, which

for the most part are applicable over only a short range of Prandtl and

Reynolds numbers. Theoretical studies have resulted in a similar plur-

ality of equations. Equation (A), fs_niliar to most thermodynamicists,

is generally referred to as the Colburn equation (ref. 3) and for such

fluids as air and water represents experimental data reasonably well

when expressed as

Nu = 0.025 ReO'Spr 0"33 (4)

The general form of the Colb_rn equation is valid for Pr _ 1.0

only when different constants are used for various Prandtl number ranges.

Hofmann (ref. i0) developed two equations to cover a Prandtl number

range from about O.l to over i000. These equations result in a nonlin-

ear relation between Nusselt number and Prandtl number for a constant

Reynolds number when plotted on log-log coordinates. The Colburn equa-

tion, on the other hand, in a particular Prandtl number range yields a

straight-line variation for a similar plot of variables. Metzner (ref.

ii) conducted an analysis similar to that of Hofmann but developed a

somewhat different equation for Prandtl numbers much greater than 1.0.

At high Prandtl numbers (over i00) Metzner assumed equality between



Schmidt number (masstransfer) and Prandtl number. Deissler (ref. 12)
presents an extensive analysis of convective heat tram_fer for Prandtl
and Schmidt numbers up to 3000 which comparesfavorably with data. This
contribution by Deissler is considered by many to be one of th_ out-
standing in the field.

For purposes of simple comparison, heat-transfer values calcuAated
from the works of Colburn, Hofmann_Deisslerj and Metzner are shown in
figure 2 in terms of Stanton number as a function of Prandtl number
(from O.S to i000) for Reynolds numbersof 104 and 106. The deviation
of Metzner's curve from Hofmann's curve for Prandtl numbersgreater
than iO0 maypossibly be attributed to somewhatdifferent analytical
approaches. Hofmann's work for the most part agrees well with Deiss!er's
analysis. For a Reynolds number of 104 the agreement is good up to a
Prandtl number of i00, with Deissler thereafter indicating a higher
Sts_ton numberwith increasing Prandtl number than Hofmann. For a Reyn-
olds number of 108 agreement seemsgood up to Prandtl numbers of i000.

PROPOSEDEQUATIONFORTURBULENTFORCED-

CONVECTIONHEATTRANSFER

Assumptions

The following assumptions were made for the presently proposed
empirical heat-transfer equation:

(i) Over the range of Prandtl numbersfrom 0.001 to i000 the Nusse!t
n_umbervaries with the 0.8 power of the Reynolds number.

(2) An empirical diffusivity ratio o* shall approach 1.0 for
Prandtl numbersgreater than O.S and decrease with decreasing Prandtl
number for Prandtl numbers less than 0.S. The values of _* for Prmndtl
numbers less than O.S shall be determined to yield the Nusselt nmnber
variation with Prandtl and Peclet numbersshown in figure i for Lykoudis'
analysis.

(3) For zero Prandtl numberthe Nusselt number shall be 6.8, which
is considered the lowest theoretical limit for turbulent flow (ref. 6).

(4) For Prandtl numbersgreater than O.S the relations between
Nusselt, Prandtl, and Reynolds numbers presented by Hofmann (ref. i0)

shall be considered valid.



Development of Empirical Equation

An equation having the general form

Nu-- B[fl(Pr)] + C[f2(pr)]ReO-Spr[f3(Pr'Re] (5)

appeared to be indicated from cross plots of data and considerations of

previous analyses. Superficially this form of equation appears to be

similar to that developed by Lyon for liquid metals rather than that

given by Colburn for air and water. However, the Prandtl number func-

tion fl(Pr) in the first term on the right side of equation (5) may

be allowed to vary from a value of 1.0 at Pr = 0 to a negligible value

at high Prandtl numbers. Therefore_ when fl(Pr) _ 0 at high Prandti

numbers, equation (5) takes the form of the Colburn equation. A simple
relation for fl(Pr) which yields the desired variation with Prandtl

number can be expressed by

i

fl_Pr;t_ = (i + Pr) = 8 (6)

By inspection, when Pr = O, the second term on the right side of

equation (S) is zero; hence, from equations (5)and (6), Nu = B when

Pr _ O. It has been previously stated that the lowest theoretical limit

of Nu for turbulent flow is 6.8 and occurs when Pr = 0 (ref. 6);

therefore, B = 6.8. The first term of equation (5) can now be written

)] 1 =B l(Pr = 6.8 (i + Pr) 6.8 @ (7)

Consider now the term f2(Pr), which represents the diffusivity ra-

tio. For Pr > 0.5, f2(Pr) approaches 1.0, while C can be taken as a

constant identical to that used in the Colburn equation. Therefore for
Pr > 0.5

f2(Pr) ~ C ~ 0.023 (s)

Equation (5) can then be written for Pr > 0.5 as

Nu _ 0.023 ReO'8pr[ f3(Pr'Re] (9)

Cross plots of Nu, Pr, and Re based on Hofmann's analysis then yield

the function f3(Pr,Re) quite readily. An equation for f3(Pr,Re) that

fits Hofmann's heat-transfer curves quite well can be written

!
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i )0.ifz(Pr,Re) = 0.41 Re 0"04 'i + Pr (io)

or, since i/(I + Pr) = e,

fs(Pr,Re) : 0.41 Re0"04@ 0"I (ll)

For Pr < 0.5; an expression for f2(Pr) that will satisfy the second

assumption stated at the beginning of this section (while not signifi-

cantly affecting eq. (9) for Pr > 0.5) can be written

i- 1 I : a.f2(Pr) " (1 + 19Pr + lOOPr S
(12)

This equation yields decreasing values of a* (empirical diffusivity

ratio) with decreasing Pr values.for Pr < 0.5 while yielding a a*

value approaching 1.0 for Pr >> 0.5.

The final equation for convective heat transfer for fully turbulent

flow in a smooth round tube can now be written

Nu = 6.8 8 + 0.023 o*ReO'Spr O'Al Re0"0480"l (is)

Equation (13) can be used to obtain the Nu against Pe function

developed by Viskanta (ref. 7) by modifying the _* relation given in

equation (12) as follows:

= I - i/<i''+ 28Pr + lOOPr s)mod (14)

Use of _od in place of the original o* has a negligible effect on

the Nusselt number calculations for viscous Newtonian fluids (Prandtl

numbers > 0.5).

RESULTS AND DISCUSSION

The Nusselt number variation with Peclet number obtained by Lykoudis

is shown in figure Z together with values calculated by us_ of equation

(15). In general the calculated values agree well with those obtained

by Lykoudis. For very low Prandtl numbers, of the order of 0.001, equa-

tion (IS) predicts a Nusselt number about i0 percent lower than that of

Lykoudis at a Peclet number of 104 . At a Peclet number of 102 the cal-

culated values from equation (i5) group about a Nusselt ntnnber of



approximately 7.0 for the Prandtl number range shown; the curves of
Lykoudis showa similar trend except for the case of a Prandtl numberof
O.i_ which yields a Nusselt numberof about 8.7.

A comparison of results obtained from equation (13) and the anal-
ytical curves of both Lykoudis and Hofmannover a combined Prandtl num-
ber of 0.001 to i000 is shownin figure 4 in terms of Stanton numberas
a function of Prandtl numberfor a Reynolds numberof 106. The good
agreementbetween values calculated from equation (13] and those of the
two analyses in their particular Prandtl numberrange of applicability
is apparent. The deviation of the values calculated by use of equation
(13) from those of Hofmannin the range 0.i < Pr < 0.5 is attributed
to the latter's fairing of the viscous-fluid curves into curves obtained
from a liquid-metal heat-transfer analysis similar to that of Lyon.
Such a procedure results in higher Stanton numbers in the liquid-metal
range than are predicted by Lykoudis and equation (13). The dip in the
curve at a Prandtl numbernear 1.25×10-2 is shownon a larger scale in
figure 5, where Stanton number is again plotted as a function of Prandtl
number for a Reynolds numberof 106• Included also in figure 5 are

curves based on Lyon (eq. (i)) and Deissler (eq. (2)). The curve based

on Deissler's work shows a dip near a Prandtl number of 5X10 -3 and gen-

erally exhibits a form and trend of Stanton number variation with

Prandt! number similar to Lykoudis' curve and equation (13). The curve

based on Lyon's work shows no dip. The dips in the curve are believed

to be associated with the diffusivity-ratio relations considered by

each investigator.

!
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SUMMARY OF RESULTS

The following result and recommendation for further work were ob-

tained from a study of available literature on convective heat transfer

for fully turbulent flow in smooth tubes:

i. An empirical equation was evolved that closely approximates

heat-transfer values obtained by the analyses of Lykoudis for liquid

metals and Hofmann for viscous Newtonian fluids. Based on these anal-

yses, the empirical equation is valid for Prandtl numbers from 0.001 to

iO00 and Reynolds numbers from 2.1><103 to 107. The terms included in

the equation are Reynolds number Rej Prandtl number Pr, and an empiri-

cal diffusivity ratio between heat and momentum _*; they are related

as follows:

Nu = 6.8 8 + 0.023 _*ReO'Spr 0"41 Re0"04e0"l

where
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= i/(i + Pr)

_* = i - i/(i + 19Pr + lOOPr 3)

2. Experimental data to verify the _alysis of Lykoudis for Peclet

numbers greater than !000 and Prandtl numbers less than 0.02 should be

an objective of experiments in a general study of heat transfer with

liquid metals.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland_ Ohio_ August 23, 1960
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APPENDIX

specific heat, Btu/(ib mass)(OF)

tube diameter, ft

functions

mass velocity, ib mass/(hr)(sq ft)

heat-transfer coefficient, Btu/(hr)(sq ft)(°F)

thermal conductivity, Btu/(hr)(ft)(OF)

Nusselt number, hD/k_ dimensionless

Peclet number, RePr, dimensionless

Prandtl number, gcp/k, dimensionless

Reynolds number_ GD/g, dimensionless

Stanton number, Nu/PrRe, dimensionless

Prandtl factor, i/(i + Pr), dimensionless

fluid viscosity, ib mass/(hr)(ft)

analytical diffusivity ratio, dimensionless

empirical diffusivity ratio, dimensionless
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